阅读 | 订阅
阅读 | 订阅
军工航天新闻

欧洲航天局开展全尺寸3D打印铜合金推力室首次热试

星之球科技 来源:3DScienceValley2020-06-07 我要评论(0 )   

2020年5月26日,欧洲航天局(ESA)在德国航空中心(DLR)对一个完全增材制造的火箭推力室进行了热试车。第一次测试持续了30秒,预计在本周内进行其他测试。ESA将对测试...

2020年5月26日,欧洲航天局(ESA)在德国航空中心(DLR)对一个完全增材制造的火箭推力室进行了热试车。第一次测试持续了30秒,预计在本周内进行其他测试。ESA将对测试数据进行收集与分析。

测试中的3D打印推力室。来源:ESA

集成冷却流道

根据ESA, 进行测试的3D打印推力室仅有三个零件,可为未来火箭的上层提供动力。增材制造推力室零件数量由数百个减少的三个,缩短了生产时间,降低了成本,显著提高液体推进发动机在欧洲运载火箭中的竞争力。

进行测试的全尺寸推力室具有3D打印铜合金衬里,该衬里具有集成的冷却通道,其外层为冷气喷涂建立的高强度外套。3D打印推力室的歧管和整体式喷油也是增材制造的。

这些3D打印零件的生产和测试工作已在ESA的“未来发射器”准备计划中进行。

ESA 表示,这次测试的全尺寸3D打印推力室是基于2019年通过ETID(Expander-cycle Technology Integrated Demonstrator-ETID为扩展循环技术集成演示器)热试车中验证的技术与方式。

ESA 总共测试过ETID的四种配置,ETID 具有三种新燃烧室几何形状和设计。还测试了两个不同的喷油器头,包括全3D打印的喷头,以及一个可再生喷嘴,该喷嘴通过最大程度地吸收热量来优化发动机循环。燃烧室和喷嘴都利用燃烧热来预热,因此在燃烧之前“膨胀”氢推进剂。冷氢的流动还具有冷却硬件的作用,在运行期间将温度保持在合理的范围内。

ESA 总共对ETID进行了23次测试,总运行时间为2707s。在测试期间,达到了49个不同的工作点,包括测试“极端”状态下的行为,例如增加系统中冷氢的流量,并因此在运行期间对硬件进行“过冷”冷却。测试显示了ETID设计的多功能性,并可在较宽的混合比和腔室压力范围内运行。多个工作点也将有助于校准,用于设计后续发动机并预测其性能的数值模型。

3D科学谷Review

今年5月以来,我们接连看到了航天3D打印应用所取得的瞩目成绩。

5月5日18时,“胖五”家族新成员长征五号B火箭搭载新一代载人飞船试验船和柔性充气式货物返回舱试验舱,从海南文昌航天发射场点火升空,正式拉开了我国载人航天工程“第三步”任务的序幕。新一代载人飞船试验船不仅完成了首次3D打印太空实验,还搭载了世界首个基于金属3D打印技术的立方星部署器。同期,中国航天科技集团有限公司一院211厂研制的全3D打印芯级捆绑支座顺利通过飞行考核验证。

北京时间 5 月 31 日,SpaceX最新的载人龙飞船在美国肯尼迪航天中心 39A 发射台成功发射。运载火箭猎鹰9号和载人龙飞船以及两名宇航员头盔的制造中,3D打印都发挥了重要作用。

3D打印已成为航天制造领域的一项核心技术,对此已无需多言。尤其是在火箭发动机制造领域,3D打印已成为航天制造机构抢滩下一代经济性、可重复利用火箭发动机的重要“筹码”。在ESA 近日试车中涉及到的3D打印推力室,是火箭发动机增材制造的一条关键竞争赛道。

l “百家争鸣”之势

铜合金推力室部件

Aerojet Rocketdyne 使用粉末床选区激光熔化3D打印技术制造的铜合金推力室部件,在2017年通过了美国Defense Production Act Title III项目管理办公室进行的点火测试。通过测试的3D打印铜合金推力室部件是全尺寸的,这款推力室将替代目前的RL10C-1发动机的推力室部件。3D打印的铜合金推力室部件由两个铜合金零件构成。相比传统的制造工艺,选区激光熔化3D打印技术为推力室的设计带来了更高的自由度,使设计师可以尝试具有更高热传导能力的先进结构,如集成内部冷通道。而增强的热传导能力使得火箭发动机的设计更加紧凑和轻量化,这正是火箭发射技术所需要的。

美国航天局(NASA)在2015年取得了铜合金部件3D打印方面获得进展,制造技术也是选区激光熔化3D打印,打印材料为GRCo-84铜合金。NASA用这项技术制造的3D打印零件为火箭燃烧室衬里,该部件总共被分为8,255层,进行逐层打印,打印时间为10天零18个小时。2019年,NASA 又公布了一种新型铜合金3D打印材料GRCop-42,这是一种高强度,高导电率的铜基合金材料,可用于生产近乎完全密集的3D打印部件,如火箭燃烧室内衬和燃料喷射器面板。

镍基高温合金一体化推力室

材料:IN718 镍铬合金;设备:SLM280。来源:SLM Solutions

CellCore公司与SLM Solutions密切合作,使用镍基高温合金与选区激光熔化技术,成功实现了多功能推力室的一体化成型。在3D打印推力室中,冷却管道是设计中的一部分,并在同一生产过程中与整个腔体一起成型。一体化的火箭发动机,结合喷射器和推力室,将众多的单个部件简化为一个,只有通过激光选区熔化工艺才能实现多功能集成的轻量化结构。CellCore公司所开发的内部结构遍布整个火箭发动机,不仅适用于传热,而且提高了构件的结构稳定性。

集成百余条冷却流道

2019年,中国的深蓝航天液氧煤油发动机再次进行了推力室长程试车,取得圆满成功。在推力性能方面,深蓝航天对主要功能部件进行优化设计,大量采用3D打印工艺,实现了国内液氧煤油火箭发动机推力室效率从95%到99%的技术跨越,达到了国际先进水平。


转载请注明出处。

3D打印激光激光技术
免责声明

① 凡本网未注明其他出处的作品,版权均属于激光制造网,未经本网授权不得转载、摘编或利用其它方式使用。获本网授权使用作品的,应在授权范围内使 用,并注明"来源:激光制造网”。违反上述声明者,本网将追究其相关责任。
② 凡本网注明其他来源的作品及图片,均转载自其它媒体,转载目的在于传递更多信息,并不代表本媒赞同其观点和对其真实性负责,版权归原作者所有,如有侵权请联系我们删除。
③ 任何单位或个人认为本网内容可能涉嫌侵犯其合法权益,请及时向本网提出书面权利通知,并提供身份证明、权属证明、具体链接(URL)及详细侵权情况证明。本网在收到上述法律文件后,将会依法尽快移除相关涉嫌侵权的内容。

网友点评
0相关评论
精彩导读