作为被动安全系统的一部分,汽车安全气囊对提高乘客安全性起到了非常重要的作用。这些各式各样的安全气囊需要高效灵活的加工解决方案。
在汽车内饰中,有一些织物的切割在传统上一般采用机械模切的方式,如汽车地毯、汽车座垫 和安全气囊织物。激光切割在金属加工领域得到了广泛的应用。如今,这种高效的加工工艺已经逐渐应用到汽车织物如安全气囊的切割加工中。
激光切割系统与机械式模切系统相比具有较明显的优势。首先,激光系统不采用切割模具,这不仅节省了模具本身的成本,还不会出现因模具制造而导致的生产计划的延误。另外,机械模切系统还存在许多自身的局限性,这源于其通过切割工具与材料之间的接触进行加工的特性。与机械模切的接触式加工方式不同的是,激光切割通过聚焦镜将激光束聚焦在材料表面,使材料熔化,同时用与激光束同轴的压缩气体吹走被熔化的材料,并使激光束与材料沿一定轨迹作相对运动,从而形成一定形状的切缝。因此,激光切割是一个加热分离的过程,在安全气囊等织物切割时,材料熔化后分离,因此切割边缘不会出现类似机械切割方式导致的毛边现象。
此外,在激光切割过程中,织物的熔点比金属低,因此激光光束的强度要求也不高,功率在几百瓦左右的连续激光器都可以满足要求,比如可以采用功率为300W的CO2激光器,切割速度可以达到5m/min。
不过,一般的激光切割机在织物切割过程中由于设计的局限性未必能够发挥其应有的性能。常见的激光切割机都采用龙门架结构,X和Y轴用于移动激光器和待切割材料。受制于这种结构,激光焦点在材料上的动态性能就很差,因此在切割半径较小的弧线或几何图形时,速度就很难提高,而且光束路径的准确性也不高。不过,一些激光切割机制造商采取了一些应对的方法,比如采用更牢固的机器结构、提高轴的驱动力、采用碳纤维增强材料部件来降低机器整体的重量,或者采用多层切割的方式。
多层切割系统的发展提高了织物激光切割的效率,可以同时切割最多30层的织物。多层切割的优势很明显——较单层切割相比,多层切割可以大大提高生产效率并降低生产成本。不过,该生产工艺非常复杂,因为在切割完成后必须进行材料的分离,而单层有时候还要被中间层再分开。此外,切割质量很难做到一致,因此只能根据对切割质量的要求来决定同时切割的层数。这也限制了激光切割的潜在加工效率和性能。
德国弗劳恩霍夫协会位于德累斯顿市的材料和射线研究所试图将用于激光打标行业的振镜扫描仪应用到织物激光切割系统中,来解决上述激光切割具有的局限性。研究人员发现,解决激光焦点动态性能差问题的根本是采用高动态光束折射方法,即采用快速倾斜反射镜将激光光束折射到材料上。折射镜随着振镜扫描仪移动,其质量较轻,因此即使在较高的切割速度下,光束的移动也很准确。大概可以实现10g的加速度。这样的动态性能在不采用切割辅助气的情况也可以实现,不过在切割边缘上的残留材料需要被完全气化掉。
在这种远程激光加工中,一般采用连续激光辐射方式,功率可以达到几千瓦。加工距离可以达到2m,范围可达1m×1m。更高的激光功率与更长焦距相结合,提供了更高的光束质量,因此在织物加工中能实现每秒切割数米的切割速度。
转载请注明出处。