阅读 | 订阅
阅读 | 订阅
市场研究

激光技术前沿应用大盘点

来源:长春新产业光电技术有限公司2020-05-18 我要评论(0 )   

近年来,以激光器为基础的激光产业在全球发展迅猛。据统计,每年和激光相关产品和服务的市场价值高达上万亿美元。 得益于应用领域的不断拓展,中国激光产业也逐渐驶入高...

近年来,以激光器为基础的激光产业在全球发展迅猛。据统计,每年和激光相关产品和服务的市场价值高达上万亿美元。 得益于应用领域的不断拓展,中国激光产业也逐渐驶入高速发展期。

本文将为大家介绍27类激光前沿应用,并对激光器的选择提供一些参考性建议 。

数字PCR(dPCR)

数字PCR是第三代PCR技术,是一种核酸分子绝对定量技术。与传统qPCR技术相比,数字PCR(dPCR)具有:绝对定量、无需标准品、样品需求低,高灵敏度,高耐受性等特点。

数字PCR一般包括两部分内容,即PCR扩增和荧光信号分析。在PCR 扩增阶段,数字PCR一般需要将样品稀释到单分子水平,并平均分配到几十至几万个单元中进行反应,通过特定激光来激发出通道中的荧光信号。在扩增结束后对各个反应单元的荧光信号进行统计学分析,最后通过直接计数或泊松分布公式计算得到样品的原始浓度或含量。相对于qPCR技术,dPCR技术具备以下优势: (1)灵敏度可达单个核酸分子:检测限低至0.001%;(2)无需标准品/标准曲线,即可对靶分子起始量进行绝对定量;(3)特别适合基质复杂样品的检测;(4)能够有效区分浓度差异(变化)微小的样品,有更好的准确度、精密度和重复性。 目前,数字PCR技术在病原体检测、癌症生物标志物研究和拷贝数变异分析、基因表达分析、环境监测、食品检测等领域得到广泛应用。

常见的数字PCR(dPCR)技术主要有两种:微滴式dPCR(ddPCR)和芯片式dPCR(cdPCR)。两者基本原理相同,由于芯片式dPCR制造芯片的成本较高,目前微滴式dPCR以更低成本、更实用的优势,正越来越受到企业的认可。微滴式dPCR(ddPCR)也在此次疫情防控中有力推动了对疑似疫情感染患者的甄别工作。

主要组成:荧光通道、激光器、光学检测器、数据采集系统等。

激光器选择:高功率稳定性,光斑高斯分布。

常用波长:405nm,473nm,532nm,639nm等。


流式细胞术

流式细胞术是一项集激光技术、电子物理、流体力学、光电测量技术、计算机技术、单克隆抗体技术为一体的新型高科技技术,被誉为实验室的“CT”,是一种可以对细胞(或亚细胞)结构进行快速测量的新型分析技术和分选技术。

通过快速测定库尔特电阻、荧光、光散射和光吸收来定量测定细胞 DNA含量、细胞体积、蛋白质含量、酶活性、细胞膜受体和表面抗原等许多重要参数。根据这些参数将不同性质的细胞分开,以获得供生物学和医学研究用的纯细胞群体。随着流式细胞技术水平的不断提高,其应用范围也日益广泛。流式细胞术已普遍应用于免疫学、血液学、肿瘤学、细胞生物学、细胞遗传学、生物化学等临床医学和基础医学研究领域。

主要组成:液流系统,光路系统,信号测量和细胞分选等。

激光器要求:高稳定性,低噪声,定制光斑。

常用波长:355nm,360nm,405nm,473nm,488nm,532nm,561nm,593.5nm,640nm,671nm,785nm等。


荧光显微成像&共聚焦显微成像

荧光显微技术是利用激光作为激发光源激发荧光基团产生荧光而成像,产生的荧光波长一般与激发光不同。它与一般光学显微镜一样是场激发,因而只能面成像。

共聚焦显微技术是在荧光显微分析技术的基础上发展起来的,利用荧光显微镜可以对生物样品发出的荧光进行观察和分析。但是荧光显微镜收集到的是样品的整体荧光,来自样品内不同部位的荧光信号相互干扰、难以区分,无法获得准确的定位和定量信息。

共聚焦显微技术的出现很好地解决了这一问题,这一技术可以获取细胞内某个薄层面上的荧光信息,而该层以外的信号被消除掉,成像清晰程度大大提高。结合计算机自动控制,可以对荧光信号的分布、强度和动态变化进行全方位的分析,得到丰富的信息。与传统显微镜相比,共聚焦显微镜可抑制图像的模糊,获得清晰的图像;具有更高的轴向分辨率,并可获取连续光学切片,增加侧向分辨率;点对点扫描,去除了杂散光的影响。其应用领域扩展到细胞学、微生物学、发育生物学、遗传学、神经生物学、生理和病理学等学科的研究工作中,成为现代生物学微观研究的重要工具。


3D扫描与打印

3D扫描技术:3D激光扫描技术是是测绘领域继“GPS定位技术”后的又一项技术革新。其利用激光扫描系统快速、自动、实时获取目标表面三维数据。近年来,随着扫描设备和应用软件的不断发展与完善,3D扫描技术具有更高的便捷度及测绘精准度。该技术的应用已从初期的测量领域,拓展到工业制造、交通建设、社会治理以及安全监管等多个方面,被广泛认为是“大数据”时代基础数据获取的重要技术之一。

目前我国已经成功的掌握了“机载3D扫描技术”,这标志着我国在3D扫描领域成功跻身国际一流水平。

3D打印技术:3D打印学名增材制造(AM),以计算机三维设计模型为蓝本;通过软件分层离散和数控成型系统;利用激光束、热熔喷嘴等方式将金属粉末、陶瓷粉末、塑料、细胞组织等特殊材料进行逐层堆积黏结,最终叠加成型,制造出实体产品。

3D打印的优势和核心在于可以打印任何复杂几何、镂空形状,小批量个性化定制、一体成型等。3D打印的核心技术有FDM熔融层积成型技术、SLA光固化技术、SLS选择性激光烧结技术这三种为常用类型。可以说3D打印在很大程度上颠覆了传统制造行业,是科技时代的产物。

激光器要求:优光束质量,选配扩束器。

常用波长:355nm,360nm,405nm,488nm, 532nm,1064nm等。


星载激光雷达

激光雷 达是 以激光作为载波,以光电探测器为接受器件,以光学望远镜为天线的雷达。利用光频波段的电磁波先向目标发射探测信号,然后将其接收到的同波信号与发射信号相比较,从而获得 目标 的位置(距离、方位和高度)、运动状态(速度、姿态)等信息,实现对目标的探测、跟踪和识别。 激光雷达相较于传统雷达,以精准的空间分辨率、精确的时间分辨率、超远的探测距离等特点成为了先进的主动遥感工具。

目前,世界上主要的空间大国都在开展 星载激光雷达 的研究。与机载激光雷达相比,星载激光雷达具有许多不可替代的优势。 星载激光雷达采用卫星平台,运行轨道高、观测范围广、可以触及世界的每一个角落,为三维控制点和数字地面模型获取提供了新的途径,对于科学研究具有十分重大的意义。

上海光机所研制的星载激光雷达系统是我国首颗星载激光雷达基本载核系统。采用3波长体制、5通道探测:1572nm-1通道,532nm3通道,1064nm1通道,可以实现对二氧化碳的浓度,气溶胶、云的偏振等特性的探测。其整体设计性能指标优于国外同类产品,实现从跟跑到领跑的跨越。

星载激光雷达 的迅速发展,体现出这个新兴探测方式所具有的独特潜力。研 究和解决星载激光雷达的关键技术,建立起自己的星载激光雷达系统。将为我国的天体观察、地形地貌测量、海洋科学以及空间探测等科学研究提供必要的手段,具有重要的科学和应用价值,是提升我国空间科研水平和综合国力强有力的保障。

主要组成:激光器, 发射系统,接收系统,信息处理等。

激光器要求:窄脉宽,高光束质量,高波长、能量稳定性、高偏振比,高单脉冲能量。

常用波长:1572nm, 1550nm, 1064nm, 532nm, 355nm, 266nm等。


激光粒度分析

激光粒度分析 是一种新型的颗粒测量技术,结合了激光技术、光电技术、精密机械和计算机技术。具有响应速度快、测试范围宽、重复性好等特点。不仅可以测量固 体颗粒还可以测量液体颗粒,可测量到微米甚至纳米级的颗粒大小。

激光束照射到颗粒上发生衍射,衍射后激光会偏移原有的传播路径;根据Furanhofer衍射理论,颗粒越大偏移量越大,经过聚焦镜聚焦到后焦平面的多元光电探测器,通过探测到衍射光的位置以及强度;再利用Mie散射理论分析出颗粒的大小以及数量。测试过程不受温度变化、介质黏度,试样密度及表面状态等诸多因素的影响,只要将待测样品均匀地展现于激光束中,即可获得准确的测试结果。 目前激光粒度分析技术已广泛应用于粉末冶金、薄膜分析、海洋分析、环境检测等领域。

主要组成:激光器,分散系统,光路系统等。

激光器要求:高功率稳定性,高重复性,优光束质量,环境适应性强,波长越短测量精度越高,可配光学平台使用保证光路的稳定。

常用波长:532nm,633nm(可替代氦氖激光器)。


量子通信

量子通信 是一项融合了现代物理学和光通信技术研究成果的量子技术。传统的激光通信是用激光本身来传信息,而量子通信是用激光来产生密钥,然后利用量子态和量子纠缠效应进行信息或密钥传输的新型通讯方式。量子通信方式很难被监控及窃听,具有其他通讯方式不具备的安全性。量子密钥分发根据所利用量子状态特性的不同,可以分为基于测量和基于纠缠态两种。基于纠缠态的量子通信在传递信息的时候利用了量子纠缠效应,即两个经过耦合的微观粒子,在一个粒子状态被测量时,同时会得到另一个粒子的状态。量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等。

中国作为全球第二大经济体,在量子科学领域其实起步并不算早,但却发展的很快。 2016年,中国发射世界首颗量子科学实验卫星——“墨子号”。完成了包括千公里级的量子纠缠分发、星地的高速量子秘钥分发,以及地球的量子隐形传态等预定的科学目标。2017年,世界首条量子保密通信干线“京沪干线”的正式开通,成功实现人类首次洲际距离且天地链路的量子保密通信。干线全长2000余公里,全线路密钥率大于20千比特/秒可同时供上万用户密钥分发。2020年,祝世宁院士团队完成了首个基于无人机平台的量子纠缠分发实验,该系统量子纠缠光源每秒可产生240万对纠缠光子,能够与高空无人机、高空气球建立长距离链路,并与现有的光纤和卫星量子网络连接,解决量子网络不同层次之间全天候、广覆盖的问题。

近年来, 量子通信技术已逐步从理论走向实验,并向实用化发展。高效安全的信息传输日益受到人们的关注,量子信息技术已成为国际上量子物理和信息科学的研究热点。

激光器要求:光点稳定性好,光斑优,偏振比高等。

常用波长:405nm,488nm,520nm,532nm,635nm,1064nm等。


免疫浊度测定

免疫浊度测定是将现代光学测量仪器与自动分析检测系统相结合应用于沉淀反应的免疫检测技术中的一种重要手段。当可溶性抗原与相应的抗体特异结合,在二者比例合适、并有一定浓度的电解质存在时,可以形成不溶性的免疫复合物,使反应液出现浊度。这种浊度可用肉眼或仪器测知,并可通过浊度推算出复合物的量,即抗原或抗体的量。免疫浊度测定是定量测定微量抗原物质的一种高灵敏度、快速的自动化免疫分析技术。可对各种液体介质中的微量抗原、抗体和药物及其他小分子半抗原物质定量测定。

按测量方式可分为光透射免疫比浊法和光散射免疫比浊法。光透射免疫比浊法测量透过光的强度。该方法操作简便,结果准确,能用全自动化或半自动化的仪器进行分析。但灵敏度低于散射比浊法、且抗体用量较大、耗时较长,不宜用于药物半抗原的检测。光散射免疫比浊法测量散射光的强度。该方法避免了透射光中所含有的透射、散射甚至折射等杂信号成分的影响,灵敏性和特异性均优于透射比浊法。该方法:(1)入射波长越短,散射光越强,(2)散射光强度与粒子的浓度和体积成正比,(3)散射光强度随焦点至检测器距离的平方和而下降。

目前免疫浊度技术主要用于各种蛋白质、载脂蛋白、半抗原(如激素、毒物和各种治疗性药物等)及微生物等检测。

激光器要求:高功率稳定性、高波长稳定性等。

常用波长:532nm,635nm,639nm,671nm,940nm等。


单分子定位显微成像

在单分子定位显微成像技术出现之前由于显微镜的“阿贝极限”或“衍射极限”限制,科学家无法清楚地观察到小于200 nm的结构 。单分子定位显微成像技术的出现打破了传统光学显微镜的分辨率极限,实现了高达横向10-20 nm,纵向20-50 nm的空间分辨率,为人们在单分子水平上观测、研究细胞内的精细结构和功能提供了强有力的研究工具,极大地促进了生命科学的发展。

单分子定位显微成像过程如下:激光照射到荧光样品上,样品经过激发后发射的荧光和少量的激光经过一系列光学滤波成像系统和算法的处理,经过CCD探测系统,最终成像在屏幕上。 荧光的产生是这个系统一个重要的环节,荧光的波长直接影响了这个系统的大部分参数。这里简单介绍下荧光,荧光是由某种荧光分子(荧光素)通过吸收特定波长范围的光(或电磁波),并受激发出的光波(或电磁波)。一般情况下,吸收的波长要短于发射的波长,也即吸收的能量要高于发射的能量,且吸收光谱与发射光谱有某种对称性。

2019年,我国科学家研发了一种新型的干涉单分子定位显微镜技术,被称为重复光学选择性曝光,通过六种不同方向和相位干涉条纹来判断荧光分子的精确位置信息。使得显微镜的分辨率提升到3nm以内的分子尺度,单分子定位精度接近1nm。该项技术的研发,将解析生物分子的水平大大提高。

激光器要求:高亮度、高效率、长寿命、无污染、无杂斑等。

常用波长: 257nm,360nm,405nm,430nm,457nm,532nm,545nm,561nm,579nm,647nm,671nm,800nm~1000nm宽带光源等。


荧光漂白恢复

荧光漂白恢复技术是使用亲脂性或亲水性的荧光分子,用于检测所标记分子在活体细胞表面或细胞内部运动及其迁移速率的一种技术。该技术的基本要求是:(1)选择合适的荧光探针,(2)具备精确可控的激光激发和荧光检测设备。

利用荧光探针进行标记,借助于高强度脉冲激光来照射细胞某一区域,目的是使该区域荧光分子的光猝灭。一段时间后,该区域周围的非猝灭荧光分子会以一定的速率向受照射区域扩散,这个扩散速率可通过低强度激光扫描探测,可检测该小分子是否有扩散现象。(注:漂白前和漂白后恢复都用尽可能弱的激光扫描全细胞,目的是得到扫描图像而不引起荧光。)在整个过程中,监测漂白区域在各时间段的荧光强度变化并绘制曲线,从恢复曲线及其数据就可以得到关于分子迁移速率、动态分子比例等信息。 荧光漂白恢复技术与其它技术结合(如:共聚焦激光扫描显微术可以控制光猝灭作用,实时监测分子扩散率和恢复速率,反映细胞结构和活动机制),为研究细胞膜的流动性提供了新的手段。

目前, 荧光漂白恢复技术 已发展成为定量测定细胞膜分子的流动性的方法之一。广泛用于研究细胞膜表面受体的结合和解离速率常数及迁移速率,细胞骨架构成,核膜结构,跨膜大分子迁移率,细胞间通讯等领域。

激光器要求:光斑优,高峰值功率(漂白阶段),低功率(漂白前/后)等。

常用波长:488nm,532nm,635nm,770-840nm可调谐激光器等。


钻石精密刻划

钻石是世界上最坚硬的物质,而在小体积钻石表面上实现精密刻划,对于一般的钻石刻划方法来说具有极高的难度。钻石激光精密刻划克服了其它钻石刻划方法的弊端,用激光进行钻石精密刻划。具有标定速度快,可随意选择字符和图案,字迹清晰美观,对钻石的光泽度和纯度不产生任何影响的特点,在钻石乃至珠宝行业都有广泛的应用。

钻石激光精密刻划包括标线和微刻两部分。激光钻石标线:激光束经过振镜系统,再经物镜聚焦于物件的表面,计算机控制振镜运动,实现光束按照设定的路径移动并在未加工的钻石表面刻蚀、形成标线,进而再进行切割加工。钻石激光微刻:光学系统将钻石成像于CCD的像元面上,CCD采集其图像并显示在计算机屏幕上,用于选取刻字的位置。然后再利用激光器输出高峰值功率的激光,经过光学系统形成直径很小的光斑并聚焦到钻石的表面,在局部形成高能量密度的光辐照,使钻石气化或石墨化,达到打标的目的。钻石激光微刻机采用物件移动的方式进行扫描,电动平移台将物件按照设定的路径作二维移动,从而实现激光光束聚焦于物件表面刻蚀,形成指定的文字或图案。

中国钻石珠宝行业从20世纪90年代便开始进入一个迅猛的发展期,其中钻石业的发展速度更是惊人!小编相信,钻石激光精密刻划未来定会炙手可热!

激光器要求:高重复性,优光束质量等。

常用波长: 1064nm,355nm等。


多普勒血流成像

激光多普勒血流成像 是一种无创组织血流检测手段,也是是一项以大范围体表图象显示微循环状态的新技术。基于激光遇到血细胞会产生相移的原理,激光多普勒可以给出血流量、血流速度、血细胞浓度等。

该技术基于发射激光通过光纤传输,激光束被所研究组织散射后有部分光被吸收。击中组织中运动血细胞的激光波长发生了改变(即多普勒频移),而击中静止组织的激光波长没有改变。这些波长改变的强度和频率分布与监测体积内的血细胞数量、浓度和移动速度直接相关(频移大小与运动速度成正比, 散射光强度与运动的红细胞数量成正比)。通过接收光纤,这些信息被记录并且转换为电信号进行分析,利用计算机系统中各种图像处理分析软件存储 、分析处理后,输出反应血流情况的数据和反映血流与时间关系的曲线图。 相比于光学微循环技术, 激光多普勒血流成像技术可以测量体表任何部位的微循环。相比于超声多普勒,激光多普勒除了无创还可以检测组织的微循环和人情绪激动时血液灌注的快速变化。

激光多普勒血流成像技术 目前已广泛应用于中枢神经系统、皮肤、肌肉、胃肠道、肝、胰、肾、肺、脾、眼、耳、鼻以及骨骼等几乎全身各个脏器的实验或临床组织微循环血流动力学研究,对疾病诊断、健康评价、药物评价等有重要意义。

激光器要求:光纤输出,连续/脉冲输出等。

常用波长: 650nm,660nm,785nm 等。


转载请注明出处。

激光技术激光应用
免责声明

① 凡本网未注明其他出处的作品,版权均属于激光制造网,未经本网授权不得转载、摘编或利用其它方式使用。获本网授权使用作品的,应在授权范围内使 用,并注明"来源:激光制造网”。违反上述声明者,本网将追究其相关责任。
② 凡本网注明其他来源的作品及图片,均转载自其它媒体,转载目的在于传递更多信息,并不代表本媒赞同其观点和对其真实性负责,版权归原作者所有,如有侵权请联系我们删除。
③ 任何单位或个人认为本网内容可能涉嫌侵犯其合法权益,请及时向本网提出书面权利通知,并提供身份证明、权属证明、具体链接(URL)及详细侵权情况证明。本网在收到上述法律文件后,将会依法尽快移除相关涉嫌侵权的内容。

网友点评
0相关评论
精彩导读